Laser Target Gallery

Travis Hughes - Computer Engineering
Caleb Dobias - Photonic Engineering
Triston Hernandez - Computer Engineering
Edward Plummer - Computer Engineering

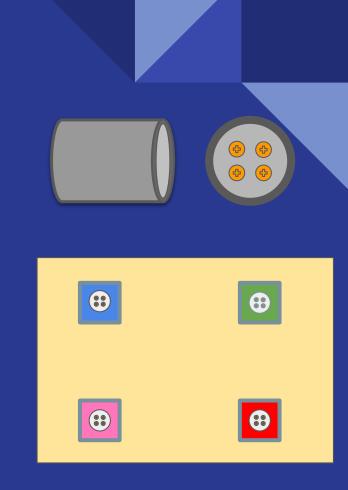
Group 1

Project Motivation

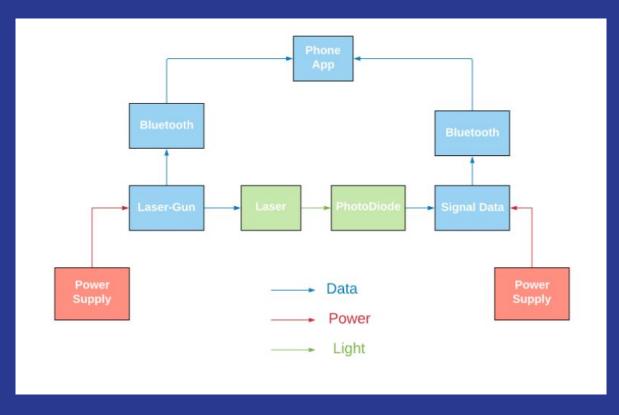
- Design a competitive arcade game that challenges the users reaction and accuracy.
- Fun and entertainment is the main goal of the project.
- Secondary applications are the training and strengthening of hand eye coordination and response time.

Similar Designs

- Quadrant Photodiodes
 - Uses photodiodes instead of photoresistors
 - Much Smaller Target
 - More commonly used for laser alignment
- LaserLyte
 - Offers only one target
 - \$300

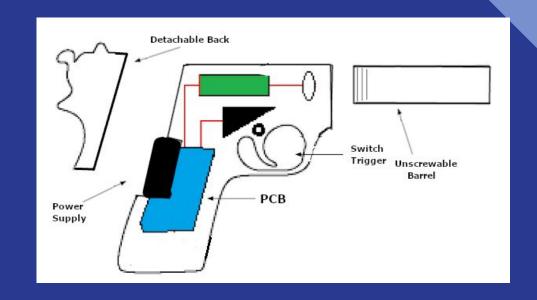

Project Goals

- Satisfy all specifications and requirements
 - 4 working targets that receives and sends light responsive signals
 - A phone application that the game uses with Android compatibility
 - Working distance of 10-20 feet
- Stay close to/under our budget
 - Expected budget is \$400


Overall Design

5 Components of the project:

- Gun Electrical System
- 2. Gun Optical System
- 3. Photoresistive Targets
- 4. Target Board MCU
- 5. Mobile Application

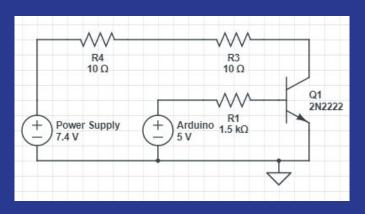


Overall Diagram Flow

Laser Gun Diagram

- Gun barrel is detachable
- for lens adjustments, and repair.
- Holes are down the barrel to secure lens in place
- Back comes off gun for recharging and replacing batteries

Power Supply and Case Clips


- 2x LC 16340 Lithium Rechargeable Batteries
- 3.7 V
- 1300 mAh
- Case clips can be attached with M3 screws and has solder points on the end of each side

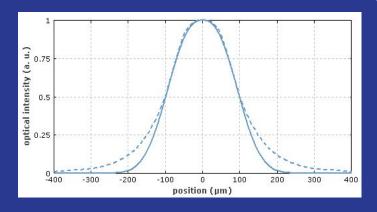
Hammer Trigger System

- Dimensions: 5.5 x 4 x 1.5cm
- Weight: 21 grams
- Work in exclusive on/off state

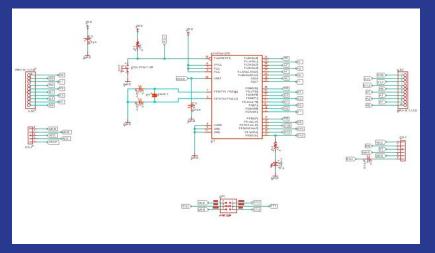
Load Bearing Resistors and BJT

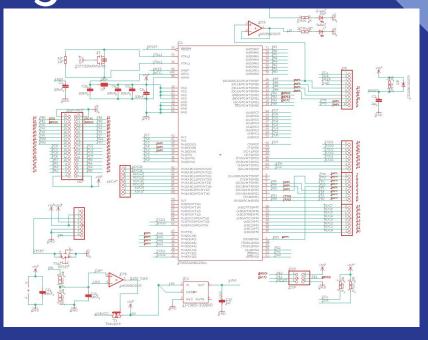
- The Arduino cannot supply enough current to the laser
- Use of a 2N2222A NPN transistor was chosen
- To reduce the load over the transistor, two 20 Ω 5W ceramic resistors were used in parallel.

Laser Gun Design


4 main components of the gun:

- PCB controlled by a ATmega328P microcontroller
- 2. The Mxfans Electric non lock switch driven trigger
- 3. The Laser Diode
- 4. The Power Supply




Laser Chamber Plan

Laser Gun PCB | Target Board PCB Design

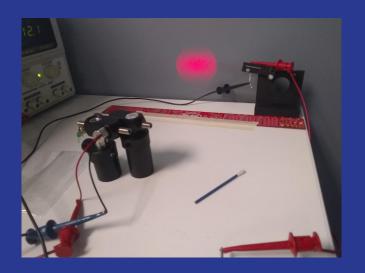
Laser Gun PCB Specifications

Microcontroller	ATmega328P
Operating Voltage	5 V
Input voltage	7-12 V
Input voltage (limit)	6-20 V
Digital I/O pins	14
Analog Input Pins	8
DC current per I/O pin	40 mA
Flash Memory	32KB
Clock Speed	16 MHz
Size	18 x 45 mm

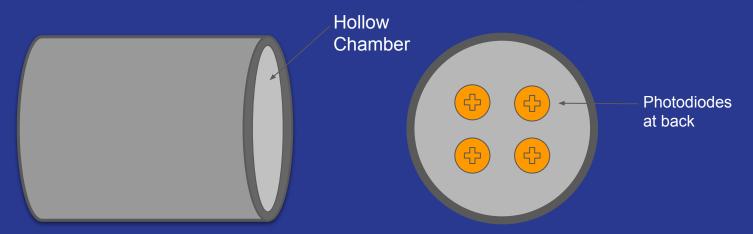
Diode Comparisons

	Green Diode	Red Diode
Wavelength	534 nm	650 nm
Voltage	3-5V	5-7 V
Current	350 mA	50 mA
Challenges	High Current Demand	Beam Shaping

Laser Diodes


- 534 nm Green Laser Diode
- Uses frequency doubling crystal to convert 1068 nm infrared light into green light
- Infrared filter placed at end of diode to filter out the unconverted 1068 nm light
- Operates at 3.7 V and 250mA

Alternate Laser Diode


- 650 nm 5mW Red Laser Diode
- Operates at 3-5V and 50mA
- Output beam is much more rectangular and less friendly to work with.

Target Board Design

- The Target board was made out of a 2 x 2 plywood sheet.
- There are 4 holes throughout the board, each with an led strip above
 - One LED strip will be turned on at a time to signal which target should be shot.
 - Each hole has a diameter of approximately 3 inches

LEDs

Part Number	Ws2182b	2835-60d
Size	1 meter	4.9 metres (16ft)
Working Voltage	3.3 -5 V	8-12V
Price	30\$	13\$
Individually Controllable	Yes	No

Controlling the LED strips

- The chosen LED operate at a voltage of 8-12 V.
- The max voltage supplied by our PCB is 5 volts.
- For this reason we used a transistor:
 - Allows us to to turn on the LEDs using the PCB as desired

Target Board PCB

- PCB Specifications:
 - 16 Analog inputs to gather data from every photo resistor
 - 5 digital inputs for all LED strips that are being used
 - 3.3 output voltage to power the HM-10 bluetooth module
 - tx/rx pins to transfer data to the mobile application

Green Light Target Filter

- Photography studio green gel filter
- Filter out as much light that is not green as possible
- Many filters are very expensive

Wireless Technology

Bluetooth module	DSD TECH HC-05	DSD TECH HM-10
Dimensions	1.1 x .6 x .1	1.2 x .6 x .1
Working voltage	3.6-6 V	3.6 - 6V
Compatibility	Android	IOS and Android
Price	8.99	9.99

Determining Score

Horizontal Component:

(avgLeftSide + avgRightSide) / 2

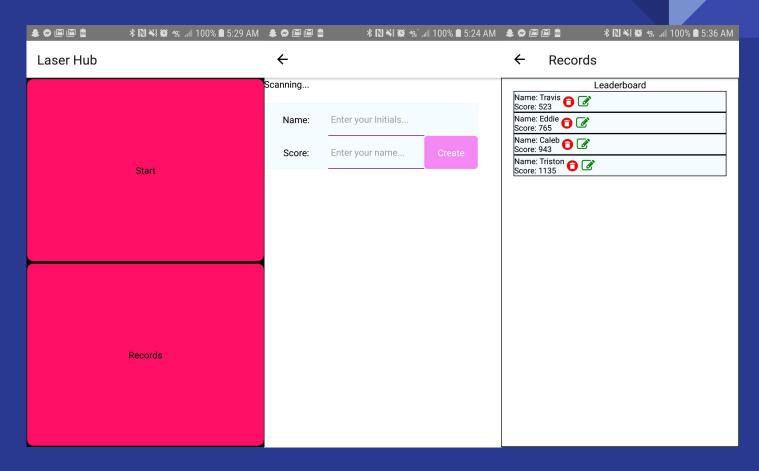
Vertical Component:

(avgTopSide + avgBottomSide / 2

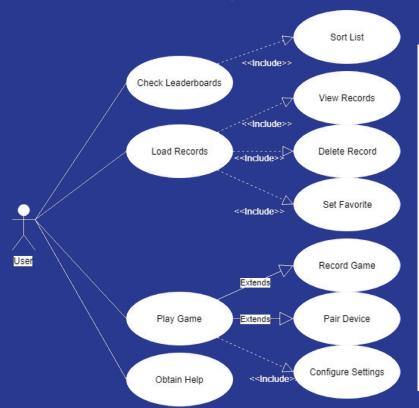
Total Score = 10 *(horizontalComponent + verticalComponent / 2)

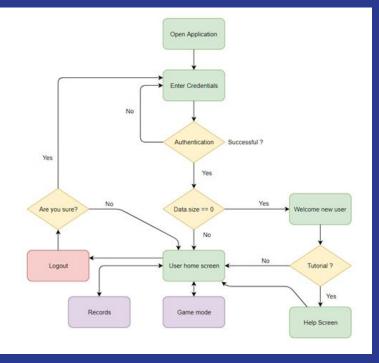
Mobile Application

- Accessibility to Android phones
- Pair and Collect data from the bluetooth module.
- Local database to store data
- Record creation, editing, and deletion

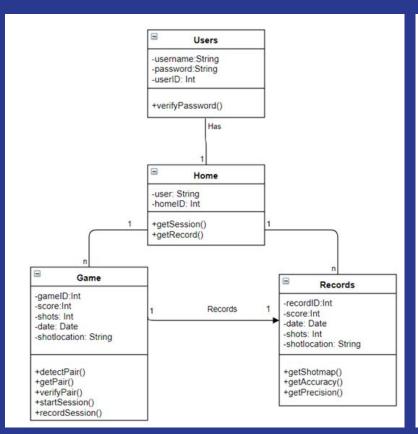

Framework

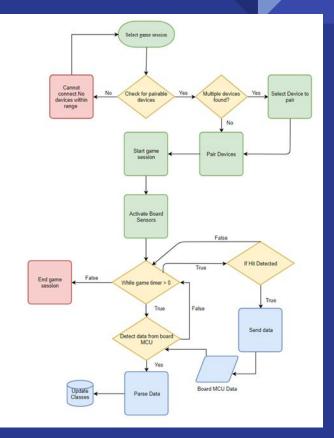
	React Native	Ionic
Platforms	iOS and Android	iOS, Android, Web browser
Native	Yes, with JavaScript Design	Yes, with native wrappers
Community	Extensive	Extensive
Code Reusability	Different UI codebases with shared logic	Shared Ui codebase across platforms
User Interface	Native elements specific to selected platform	Web Ui elements work across platforms
Documentation	Extensive	Extensive


Database


	Realm	Google Firebase	SQLite
Price	Free	\$25/month	Free
Database Type	Object Oriented	Document Store	Relational
Documentation	Extensive	Extensive	Extensive
Cloud-based	No	Yes	No
Ease of use	Simple	Moderate	Moderate

Phone Views




Use Case Diagram and Software Flowchart

ERD And Session Flowchart

Challenges

- Mobile App connection to Hm-10 module
- Powering LED strips
- Transferring system from development boards to PCBs
- Laser Gun Transistor Failures & Voltage modulation
- Maintaining a stable development environment.

Challenges Continued

- Overcame laser shape issues with a frequency doubled laser.
- Overcame transistor burnout and load issues with high load resistors.
- The number of pins on the back of the board made us have to redesign a shield, which will allow us to handle all the I/O for the entire game.

Administrative Content

Budget

Item	Purchase Location	Manufacturer	Price
PCBs/ Boards	https://jlcpcb.com/	JLCPCB	150\$
Wires and PCB Components	https://www.mouser.com/	Mouser	40\$
Photoresistors	https://www.amazon.com	XLX	10\$
Bluetooth Microcontroller	https://www.amazon.com	DSD TECH	25\$
3D Printed Laser Housing	nScrypt	nScrypt	30\$
Laser Diodes	https://www.amazon.com	lights88	30\$
Lens	https://www.amazon.com	lights88	10\$
Total			315\$

Work Distribution

Name	Laser Gun	Targets	Target Board	Software
Triston	S		S	S
Caleb	Р	Р		
Travis		S	Р	
Edward			S	Р

Questions?